
N94-11431

LARGE PROJECT EXPERIENCES

WITH

OBJECT- ORIENTED METHODS

AND

REUSE

DECEMBER, 1992

Prepared for:

Seventeenth Annual Software Engineering Workshop
Software Engineering Laboratory

Goddard Space Flight Center
Greenbelt, Maryland 20771

Prepared by:

W. Wessale, CAE-Link Corporation
D. Reifer, Reifer Consultants, Inc.
D. Weller, CAE--Link Corporation

SEL-92-O04 page 204

Introduction

The Space Station Verification and Training Facil-

ity (SS VTF) is being developed by CAE-Link Cor-

poration under contract to the Mission Operations

Directorate (MOD) at the Johnson Space Center

(JSC) in Houston, Texas to provide full mission

training for both Space Station Freedom (SS F) crew

and ground flight controllers. Figure 1 presents a

block diagram of the SSVTE The SSVTF consists

t.AN

TRAINER
INTERFACE

L_gF':"""!_J'''_............

WINDOW]

DISPLAY. [
I

I
OPERATIONS

SUPPORT
COMPUTERS

I °

INSTRUCTOR/

• OPERATOR

STATIONS (12)

i I
I
.OST II

COMPUTERS I I

II

DMS _ __ __

STRINGS

L

liii!:!!::.N_St_:_::::lI :msA:_:_!_!:t

! I I

I
SPACE

STATION SPACE STATION
NETWORK CONTROL CENTER

SIMULATION . INTERFACE
COMPUTER ".

J
"COMM &

TRACKING

HARDWARE

Figure 1 - SS VTF

of four crew stations with supporting computing

and communications equipment. The four crew sta-

tions represent the SSF USA Habitation Module,

USA Laboratory Module, Node, and Cupola.

These crew stations can be used concurrently for si-

multaneous independent training; combined with

each other or the Shuttle Mission Training Facility
(SMTF); or integrated with the SSF Control Center.
In addition, the SSVTF can be used without crew

stations to drive the SSF Control Center for flight
controller training.

The SSVTF will be used for assembly, shuttle prox-

imity operations, and SSF systems operations train-
ing. The SSVTF will be used to train both astronaut

crews and ground based flight controllers. This in-

cludes the use of the Space Station Remote Manipu-
lator System (SSRMS) via closed--circuit televi-

sion (CCTV) and out-the-window viewing from

the cupola on top of the Node. The SSVTF will in-

clude the SSF Data Management System (DMS) --

the onboard computers.

Block Diagram

The SSVTF will also be used to develop and verify

crew and flight controller operational procedures
for mission planning and mission support.

The SSVTF is a large project with over 1.8 million

lines of source code estimated to be delivered by

1999. There are five deliveries planned between

1995 and 1999, providing increasing capabilities

corresponding to the build-up of the on--orbit ve-

hicle and the control center. The first delivery is a
Part Task Trainer (PTT) in January of 1994, the se-

cond delivery is the initial Full Task Trainer (FTT)

in June of 1995. The second Delivery consists of

over 500K source lines of code (SLOCs) and the

largest delivery will consist of approximately 600K
S LOCs of code.

Due to pressures from reduced budgets, maintain-

ing concurrency with the actual SSF vehicle and

ground systems, and a projected 30-year life span,

the S SVTF project is attempting to leverage the fol-

lowing state--of-the--art software engineering
technologies:

SEL-92-004 page 205

• Ada as the primary programming lan-

guage, with C++ in limited areas

• Object-Oriented Requirements Analysis

(OORA) followed by Object-Oriented

Design (OOD)

• Incremental development lifecycle

• Systematic reuse

• CASE tools; both front-end analysis

tools, and back--end reverse engineering

/ code analysis tools

• Networked Unix workstations with Ra-

tional Ada development environment

The remainder of this paper presents our experi-
ences with each of these technologies and the les-

sons learned applying them.

Development Lifecycle

Strate_

Incremental Development

The incremental life.cycle being used for SSVTF

software development breaks up each Delivery to

NASA into multiple internal deliveries from the en-

gineering deparmaents to a Delivery Manager. Each
of these internal deliveries is called a Capability

Build Release (CBR), and represents some subset

of the requirements allocated to one CSCI. CBRs
were defined working backwards from the fixed

Ready-for-Training (RFT) date. CBRs were de-

fined by a Delivery Integration Team that used

knowledge of the critical development path, the
technical risks, GFE availability dates, inter--CSCI

dependencies, and the SSF on-orbit assembly se-

quence. The overall goal was to begin integration
early and continue integration in parallel with the

remainder of the development We wanted to maxi-
mize execution time on the target computers within

a target environment to increase reliability of the de-
livered software.

Each CBR applies to one CSCI and represents a

subset of the system level requirements that must be

satisfied by the CBR. The development engineers
can then subdivide each CBR into one or more In-
crements. Each increment is scheduled and man-

aged separately, and proceeds through the full soft-

ware engineering lifecycle independently of all

other increments. Most CBRs consist of two to

three increments. Increments are integrated and

tested at the CSCI level to form a CBR before they

are turned over to the Delivery Manager for integra-

tion into the Delivery.

Typically, the first increment develops a capability
that is simple, or well understood. The first incre-
ment familiarizes the developers with the process,

the products, and the tools. The second and subse-

quent increments are chosen to mitigate risk. That
is, the second increment would implement the capa-

bility that has the greatest rise

• Capability risk (may not be able to fully

provide the capability)

• Technical approach risk (envisioned ap-

proach may not be adequate)

• Schedule dependency risk (may need to

develop portions of the capability early to
support the needs of another CSCI)

Inspections

Inspections were used rather than formal Reviews.

The SSVTF Inspections are not formal inspections

by an independent QA group, but rather engineer-

ing inspections. SSVTF Inspections are chaired by
a multi--disciplinary Software Review Board

(SRB) formed within the SSVTF project. The SRB
consists of 7 members representing each of the de-

velopment organizations and covering all develop-
ment domains m real-time, simulations, graphical

user interfaces, system software, software develop-

ment tools, operations support tools, and informa-

tion systems. These members were selected based

upon their technical abilities, and the respect of

their peers within their engineering domairL

Inspections arescheduled for each CSCI by the lead

engineer. Attendees include one or more SRB rep-

resentatives, the developer(s), the customer's cog-

nizant engineer(s), and representatives from other

organizations that plan to use or interface with the

CSCI. Inspection materials are distributed prior to

the inspection meeting, and attendees are expected
to have reviewed the materials.

The actual inspection meeting is issue--orientecL

That is, the inspection meeting is not a walk-

through of the inspection materials, nor is it a sum-
mary presentation of the inspection materials.
Rather, attendees raise issues identified while re-

SEL-92-004 page 206

viewing the materials, and the issues are either an-

swered, an agreement is reached on the corrective
action, or an action item is recorded for further anal-

ysis. Meeting minutes are used to record and man-

age the deficiencies. There are no Review Item Dis-

positions (RID) generated that require official

review, response, disposition meetings and closure

signatures.

Inspection materials are snapshots of engineering

products taken from Software Development Fold-

ers (SDF). These materials represent the engineer's

working notes at the time of the inspection. They
are typically formatted in accordance with the de-

liverables, but no technical editing, quality assur-

ance. or formal delivery occurs.

The inspections were initially created as a mid-

course guidance and feedback mechanism to assist

in the application of Obj_t Oriented Requirements

Analysis (OORA). Each engineer had received for-

mal training in OORA, but since there was not an

in-place OORA culture, some means was needed to

provide early guidance to the engineers before they
had expended too much effort or schedule, and to

provide a means to identify special cases that were
not covered by the OORA class materials.

Lfssons Learned

Get your customer to buy-in when incre-

mental development is used

Incremental development requires your customer's

acceptance since it impacts the structure and con-

tent of your development schedules and makes it

more difficult to assess overall project status. Your
customer must understand the benefits provided by

incremental development: shortened development

schedule, greater reliability in the delivered prod-

uct, and facilitating risk management by isolating

risky capabilities, or attacking them early.

Inspections make more sense than PDR
& CDR

Inspections can focus on the real issues -- require-

ments, performance, and design -- rather than be-

come "dog and pony" shows or training sessions.

Logistics are much simpler. Materials can be pro-

duced and distributed by the developers rather than

formally delivered through a contractual mecha-

nism. Inspections can be scheduled as needed, fa-

cilitating incremental development. Teams can be
built and focused on the issues at hand. Finally, In-

spections are smaller and are limited to just those

people that are either direcdy impacted by the CSCI

or have previous applicable development experi-
ence.

Delivery Manager concept is essential

The engineering managers develop CSCI incre-

ments to satisfy the CBRs, but a Delivery Manager

is necessary to define the CBRs, manage the in-

tegration of the-CBRs, and manage the selloff to the
customer. This allows the deliveries to stay focused

to the customer's needs, while the engineering man-

agers continue development of CBRs for future de-
liveries.

Beware the negative effects of prototyp-

ing

Prototyping can hinder the culture change to Ada,
Object--Oriented methods, and reuse if it is-done

prior to formal training in the project's methods and

tools. Without guidance or formal training, the pro-

totype groups will evolve their own methods, nota-

tions, and styles. They will be reluctant to redo their

work once they have received formal training. The

prototype group becomes a culture that strives to

preserve itself.

Prototyped software that exhibits a portion of the
desired behavior will be viewed bY the developers

and managers as a deliverable product. After all, if

the software already does what it needs to do, why

not just tweak it to satisfy the rest of the require-

ments, instead of starting over and rebuilding it?

Processes

Strateav

Existing processes would not work with the chosen

object--oriented technologies and pre-defined

tools. Existing processes within CAE's NASA pro-

grams were developed to support manual, function-
al methods for FORTRAN deliverables We per-

formed an internal SEI Software Engineering

Capabilities Assessment (SECA) and deterndned
that we needed to initiate an earnest effort to im-

prove our processes, especially as we moved to ob-

ject--oriented technologies and Ada. Change was
needed because processes existing within CAE

from DoD projects using Ada did not utilize

SEL-92-004 page 207

OORA, were tailored to DoD-STD-2167A, and as-

sumed the use of a different development environ-

ment.

We established a Process Engineering Group (PEG)

within the SSVTF Program Office to facilitate, and

coordinate the creation, dissemination, and applica-

tion of processes for Object-Oriented development
with Ada. The PEG worked with engineers to de-

velop prototype processes that would then be ap-

plied and refined before being published.

We also established a Process Improvement Steer-

ing Committee (PISC) to gain approval of the pro-
cesses from the engineering and program managers.

The PISC assured us that a process would not vio-

late schedule or budget constraints.

Processes focused on product contents and inspec-

tions, rather th,an the engineering methods to devel-

op the products. We taught methods in formal
classes, but we established completion criteria in

the processes. We found it necessary to define who
did what, and when, to efficiently mechanize the In-

spections.

A Software Review Board (SRB) was established,

as described above, to oversee the application of the

processes and provide guidance and interpretation

to the engineers.

Lessons Learned

The most critical processes are the ones

without sex appeal

The most critical processes are those that describe

how different groups interact m who does what and

when. Critical processes were: the development

lifecycle; the process for each inspection; the pro-

cess for publishing and releasing deliverables; the

process for creating, screening, acting on, and clos-

ing Review Item Dispositions (RIDs). We needed

product checklists and protocols to define when

products were complete, who received them, who
reviewed them, and how to handle reviewer's com-

ments. These processes were especially important

since they had to be revised or created from scratch

to accommodate the development lifecycle object-
oriented methods and reuse. Existing conventional

processes would not work within an incremental
development lifecycle where there is extreme paral-

lel development.

Surprisingly, the non-critical processes were the

engineering methods used during each phase of de-

velopment. We used formal training and examples

rather than processes to define these engineering
methods. The optimum engineering process varies
from domain to domain and group to group depend-

ing upon: group expertise, available data, difficulty

of applying the methods, schedule constraints, and
tools used.

Just-in--time process engineering works

when you dedicate the resources needed

Due to schedule and resource constraints, we ended

up applying just-in-time principles to establishing

processes. In reality, we applied just--a-little-late
principles, because the first couple CSCIs were

used as prototypes to develop and verify the pro-
cesses. These CSCIs suffered more rework and

less-compliant products than the remainder. By the
time the first CSCIs reached PDR, our process defi-

nition activities had matured so that we were finally

just-in--time.

We have found that jnst-in--time process engineer-

ing requires a constant staff of 2-3 people in the

Process Engineering Group (PEG), with support

from responsible engineers designated for each pro-

tess. The responsible engineer would develop the

checklists, product examples, and rough process
flow. This material would be applied to the first

couple of CSCIs, then turned over to the PEG for
formalization into a process. A process typically re-

quires two to three months elapsed time from desig-
nation of a responsible engineer until it's released as

an approved process.

Process groups can be small, and should

focus on work flows, checklists, and ex-

amples

The key to success with process packaging was

written procedures and checklists. We used pro-

cesses to specify who does what and when through

work flows, product completion checklists, and

realistic examples. We used training for application
of methods.

Our Process Engineering Group consists of only 2

full-time engineers with part-time assistance of

designated engineers from the developer's orga-
nizations. The part-time assistance from engineers

equates to roughly one more full-time person. This

SEL*92-004 page 208

approach was supported by the tbrmal methods

training as well as mentoring from the SRB.

Need a multi-disciplinary team to pro-

mote and mature processes

We created the Software Review Board (SRB) to re-

view all products, and provide uniform guidance on
the application of the methods. The SRB is com-

posed of representatives from each of the engineer-
ing managers, and has a cross section of domain ex-

pertise. In-Process and completion inspections

were established for each CSCI to provide early
feedback and guidance for each phase of develop-

menr. The SRB also provided guidance on real-

world situations that were not covered by the formal

training.

Methods

Strategy

We wanted a consistent method applied throughout
the development lifecycle. We had learned from the

B-2 Weapon Systems Trainer (WST) that: 1)ob-

ject-oriented design was effective, 2)it was difficult

to transition from functional decomposition to ob-

ject-oriented design at PDR, and 3)object--oriented

design created more opportunities for reuse.

We also wanted to facilitate large-grained reuse.

Therefore, we wanted to apply OORA followed by
OOD with Ada.

We applied an OORA method and notation that is

a hybrid of many different methodologists (Grady

Booch, James Rumbaugh et al, David Harel, and

CAE methodologists). We adopted class specifica-

tions and composition/inheritance diagramming

concepts from Booch; association concepts from
Rumbaugh et al; object message diagrams from Ed
Colbert and Ed Seidewitz; statecharts from David

Harel. The overall OORA process was developed
by CAE methodologists in conjunction with our

training subcontractor.

We also tailored our deliverable documentation to

support object-oriented development and reuse.

After unsuccessfully tailoring DoD-STD-2167A

DIDs, we developed our own document, the Ob-

ject-Specification (O--Spec). The O-Spec bundles

requirements, preliminary design, and detailed de-

sign of each class together. Each O-Spec contains

multiple sections, where each section documents

one class. This improves reusability by allowing

classes to be individually reviewed as a whole, mo-

dified, and even moved among deliverable docu-

ments without disturbing the remainder of the docu-

ment The O--Spec is intended to provide a single

source for all life-cycle information concerning
each class.

Lessons Learned

Fusion of methods is needed due to their

relative immaturity

Some methods are strong in statics - composition

and inheritance. Other methods are strong in inter-

object dynamics u messaging. And still other
methods can be used to express intra--object dy-

namics _ states. None of the methods uniformly

support all three.

This is complicated by the limitations of the tools

available, and the need to address real-time perfor-
mance.

We chose to merge the techniques of eight me-

thodologists to provide complete coverage, and
then alter or restrict the methods and notations to fit

the constraints of our toolset.

Scalability and the Big Picture are key

success attributes for a new methodology

We previously found that excessive rigor during

analysis or design can lead to paralysis as the re-

quirements or design model matures. Inevitable

changes towards the end of analysis or design re-

quire inordinate administrative efforts. Rigor dur-

ing analysis and preliminary design does not scale

up to large projects. Some looseness is acceptable

during analysis and preliminary design. The re-

quirements or design model does not need to have

semantic closure as long as it can be interpreted and

understood by human reviewers familiar with the

project

We found, however, that the object--oriented meth-

ods and products tended to focus on classes, to the

detriment of the Big Picture. That is, our reviewers

found they could understand the individual classes,

but found it difficult to verify how instances of the

cla_ses would c(mperate to satisfy the CSCIs func-

tional requirements. This was especially true for re-

SEL-92-004 page 209

quirements allocated to more than one class. This

deficiency can be solved with more effort spent de-

veloping the requirements and design model at the
CSCI level.

The switch to new methods / processes is

accompanied by massive infrastructure

changes

We found our new object-oriented methods and re-

use processes had a broad impact on the project in-
frastructure. We changed our initial infrastructure

to accommodate: new tools; new products; new

processes for reviewing, publishing, and delivering

the products; new ad hoc organizational entities;
and new earned value measurements. These

changes required as much effort and time to realize

as the original change to OORA and OOD within

the engineers.

A Chief Methodologist, or Methodology

Team, is required to provide guidance

and mature the process

A focal point is required to guide the culture change

to object-oriented technology and reuse. This focal

point must have early and frequent exposure to all

CSCI products to gain feedback on method and pro-
cess effectiveness, provide guidance to the develop-

ers, and resolve unexpected issues. Technical is-
sues arise that must be addressed as development

progresses, and application questions must be an-
swered by mentors in each development domain.

Tools

trS _t¢

The SSVTF project uses the software development
toolset defined by SSF Software Support Environ-

ment (SSE). The SSE is a set of software develop-

ment tools that were specified by the SSE Contrac-

tor for use by all SSF operational software

development activities. The SSVTF project uses a
network of 96 Solbourne $4/500 Unix workstations

distributed at the developers work areas, supported

by 5 Solbourne Servers and 9 Rational $400 Ada

engines. PCs and Macs were also available, but

were only used as administrative tools.

The following tools are available at each of the Sol-
bourne workstations:

• Teamwork/Ada - Used to create OORA

diagrams. We redefined the meaning of

the icons to satisfy our OORA notations.
We did not use Teamwork/Ada to create

machine diagrams or for code generation.

• Interleaf Technical Publication System -

Used to create O-Spec documents, as

well as reports and white papers.

• Alsys Ada - Used for Ada training and

prototyping.

• Oracle relational database including SQL

extensions and Oracle CASE tools- Used

for deliverable database applications, as

well as requirements tracing, interface

management, and budgets.

The Rational Ada engines provide:

• Rational Ada environment - Used for

editing, compiling, and testing Ada com-

ponents

• Code Management and Version Control

(CMVC) - Used for engineering version
control during development, and config-

uration management during integration.

• Remote Compilation Integrator (RCI) -

Used for compiling and generating

executable loads on the target computers.

NELS is being evaluated as a potential reuse reposi-

tory.

Due to budget constraints, we plan to maintain a ra-
tio of 1.4 software developers for each Solbourne

workstation, and 12 Ada developers for each Ratio-

nal Ada engine..

Lessons Learned

Searching for proper tooling is like hunt-

ing for the Holy Grail

You won't be able to find the perfect set of tools that
will:

Support a concise and precise graphical

expression of requirements and design

Verify completeness of requirements al-
location

SEL-92-004 page 210

• Verify correctness of design

• Maintain consistency of notation across

multiple developers

• Maintain consistency of interfaces

among multiple developers

• Produce deliverable documentation with-

out additional effort

• Evolve production code directly from the

requirements and design products

• Trace from requirements to design to
code, and back

• Provide version control for developers,

and configuration management for in-

tegration and sell off

There currently are no toolsets or environments that

can provide all of this, regardless of what vendors

tell you. Different tools each provide a different

portion of these capabilities, but trying to create an

integrated toolset is not practical due to the dissimi-

lar paradigms and information representation tech-

niques used by each tool. To be successful, you

must exploit existing tool capabilities and compen-
sate for their weaknesses.

Benefitsof CASE tools are largely over-

rated outside of database applications

We found an interesting paradox with front--end

CASE tools. If you rigorously apply the method a

front-end CASE tool was developed to support,

your project will become ensnarled keeping the vol-
umes of information correct and consistent as you

approach the completion of analysis or design. On

the other, hand, if you don't rigorously apply the un-

derlying method, the front-end CASE tool is used
for little more than a drawing program with rubber-
banded arrows.

Rational is both good news and bad news

The Rational Ads environment supported by

CMVC is a very powerful development environ-

ment that takes the sting out of strong typing, yet

still accentuates all of the programming-in-the-

large capabilities of Ada. The Rational Subsystem,

provided by CMVC, permits incremental or paral-

lel development, which is especially important on

projects with multiple development teams. The Ra-

tional scales up well for large projects.

The Rational environment also provides the con-

cept of "subsystems" that facilitate parallel devel-

opment and minimize recompilation effects. The
structure of Rational subsystems is critical to both

rapid compilation and management of parallel de-

velopment efforts. Rational subsystems must be

defined as a part of the preliminary design activi-
ties.

The Rational environment requires a significant

learning curve-- several months m over and above

the learning curve for the Ada programming lan-

guage. This learning curve is due to:

• The Rational environment is unlike any-

thing else.

• It introduces a completely new vocabu-

lary.

• It provides a complex set of capabilities,

is very flexible, and is extensible

• It does not adhere to the normal paradigm

of code, compile, link, execute

When formal training is supplied, the Rational can

be applied very effectively.

Our most valuable tools were organiza-

tional

We constantly struggled with getting the develop

merit organizations to agree on lifecycle milestones
and deliverables, to agree on methods and ap-

proaches, and to consistently apply them. We were

undergoing a culture change, and the organizational
tools that supported that change were more impor-
tant than the workstation tools used for develop

merit.

We used the following organizational tools:

• We established formal training classes for

OORA, OOD, the Ada programming lan-

guage, and our tools.

• A System Engineering Team was estab-

lished to develop consistent interpreta-

tions of requirements.

• A Software Review Board (SRB) was es-

tablished to develop consistent guidance
for software methods, architecture, and

programming.

• We established internal inspection mile-

stones along the development lifecycle to

SEL-92-004 page 211

provide visibility into the application of
methods and tools, and to provide early

corrective guidance to the developers.

• We established a Process Improvement

Steering Committee (PISC) to gain engi-

neering and project management accep-

tance and approval of software develop-

ment processes.

• We used brown bag presentations at lunch

to share technology and information rele-
vant to SSVTE

• We used Unix netnews as a forum for

questions, opinions, gripes, and guid-
ance.

We did not reorganize the project_ We established

ad hoc boards and teams to provide the additional

organizational support.

Reuse

Strate_v

The SSVTF budget has been based on systematic
reuse since 1989. We used the software estimating

tool SoftCost-Ada (Reifer Consultants Inc.) to ac-

count for the effects of reuse in the SSVTF develop-

ment budget. Productivity during the first deliver-

ies was penalized by 15% to account for the extra

effort required to systematically identify and
construct reusable components. Productivity dur-

ing later deliveries was increased by 25% to account

for exploiting the reusable components.

Ad hoc reuse occurs when developers independent-

ly discover and exploit reuse opportunities during

design and coding of software components. Sys-
tematic reuse occurs when it is first identified prior

to detailed design, responsible developers and reus-

ers are identified, and the resulting agreements are

reflected in development plans. Systematic reuse is

required to achieve large-grained or widespread re-
USe.

We formed a Reuse Inspection Team and identified

a Reuse Inspection milestone during OORA to fa-

cilitate systematic reuse. The Reuse Inspection
Team consisted of seven software engineers repre-

senting each of the engineering managers and each

of the development domains. The Reuse Inspection
Team chaired a Reuse Inspection for each CSCI and

used preliminary OORA products to identify reuse

opportunities. Each opportunity was documented

by a Reuse Action Item (RAI) that identified the af-
fected developers, and requested that they evaluate

and recommend a reuse approach. Acceptable rec-
ommendations included: l)agreeing that two or

more identified components be acquired by reusing

another component without change; or 2)merging

requirements to specify a larger, more complete

component; or 3)recommending that separate com-

ponents be developed without reuse.

A separate reuse group responsible for developing

and maintaining all reusable components was not

considered practical. The established SSVTF orga-
nization was organized around product areas such

that many reusable components would span two or

more engineering managers. We were also con-
cerned that a separate reuse group would lose its fo-

cus on project requirements and become less re-

sponsive to the schedule dependencies of the

individual reusers. Engineering managers would
be reluctant to risk their development schedules.

We felt this would eventually undermine reuse. We

wanted reuse to occur through cooperative efforts

among the engineering managers so they had an ac-
tive role in making it happen.

Although we are considering using an incentive

system in the future, we have not used an incentive

system to date. We have approached reuse as a cul-
tural issue -- it's something you're expected to do.

We anticipate additional reuse impacts managing

change of reusable components during integration.

Lessons Learned

Barriers to reuse are primarily managerial

We found that most developers are willing to identi-

fy, plan, and follow-through on systematic reuse.
We also found that upper management likes the pur-

ported cost and schedule benefits. The difficulty

lies in schedule dependencies, budget impacts, and
trust among the middle-managers. These technical

leads and engineering managers must make reuse

happen, and bear the burden if it doesn't.

Normally the designated developer is the user with

the most complete or complex requirement for the

reusable component. However, a dilemma occurs

when the developer's need date follows that of other

potential reusers. Can the developer expend the re-
sources in time to meet the reusers need dates? If

SEL-92-004 page 212

not, can one of the other users (who have less com-

plete or complex requirements) successfully devel-

op the more complete reusable component, and

without impacting their schedule?

If the reusable component is larger in scope than

originally planned by the developer (and it usually

is), can budget be made available from the reusers

to augment the developer's budget?

In addition to schedule and budget issues, how can

a reuser be sure that what the developer is creating

will really be reusable and still satisfy his require-
ments once it's done? Will the reusable version of

a component still satisfy real-time performance
constraints?

We solved the schedule and budget problems

through work sharing at the developer level. That
is, a team of developers from two or more reusers

would be informally created to develop the reusable

component. This team would coordinate their acti-
vities so that each of their schedule need dates is sa-

tisfied within the original budget allocations. No

formal paper work was required. These teams were

"gentlemen's agreements" between the developers
and their leads.

We addressed the issue of trust by having the reusers

participate in the reusable component's inspections.

Strategic planning, commitment, empow-

erment, and persistence are needed to

make reuse happen

Reuse intentions will wither and die before they

bear fruit if not tended. Developers and managers

lose sight of reuse as they attack their immediate

technical, schedule, and budget problems. Original
reuse agreements can be compromised, and new re-

use opportunities can be overlooked, if reuse isn't

revisited repeatedly during the development life-

cycle.

We have made reuse a part of every inspection w

either as a major topic, or as a check that previous

agreements have not been compromised. This pro-

vides six opportunities to readdress reuse during de-

velopment.

We empowered the developers to analyze each re-

use opportunity and recommend a reuse approach.

We made initial reuse decisions based on develop-

er's recommendations. If the developers recom-

mended against reuse, and their technical leads sup-

ported that recommendation, no reuse would be

planned. On the other hand, when reuse was recom-

mended, the potential reusers were always able,
with their technical lead's assistance and support, to

identify a developer and an approach to overcome
schedule and budget impacts.

Object-oriented methods make it easier

to spot, assess, and agree upon reuse

opportunities

Composition and inheritance diagrams made it easy

to spot reuse opportunities. A comparison of attrib-

utes and operations made it easy to spot differences

in required components. Reuse analyses often re-
sulted in alternate or additional class definitions.

We held 35 reuse inspections that generated 53 re-
use action items which resulted in 23 reuse opportu-

nities. Based on our design at PDR, we predict that

approximately 30% of our delivered software will
be reusable.

We were also able to facilitate the common use of

COTS products across three different development

groups.

Be prepared to modify your processes to .
accommodate reuse

New processes must be developed to initiate, track,

and manage systematic reuse, such as: Reuse In-

spections, Reuse Inspection Teams, Reuse Action
Items.

Milestones will require more peer involvement

across development groups. That is, potential reus-
ers as well as technical management and the cus-

tomer must be involved at inspections.

Changes to reused components require approval

from more than just the developer. A control board

containing a representative from each reuser must

approve reusable component modifications to pre-

vent degrading their reusability.

Training

Strategy

We used three types of formal training supplement-

ed by brown bag lunch presentations and open help

sessions to support the culture change required.

The three types of formal training are:

SEL-92-004 page 213

• Large Object-Oriented System Engi-

neering (LOOSE) training for all engi-

neers during subsystem design

• OORA, OOD, and Ada programming

training for all software developers

• O--Spec familiarization training for all

customer personnel and managers that
would be reviewing our deliverables.

LOOSE training was created internally and con-

sisted of a two-day class in object--oriented think-

ing for subsystem partitioning and the selection of

CSCIs. LOOSE focused on objects, messages, and

composition, but did not introduce classes or inheri-
tance.

We acquired a single OORA, OOD, and Ada pro-

gramming training vendor, Fastrak Training, via a

full-and--open competition. We wanted a single
vendor for consistent terminology, uniform pro-

gression from requirements to code, and tailoring
for SSVTF tools, target environments, and prod-

ucts. Training consists of a four-day OORA class,

a five--day OOD with Ada class, and twelve days of

Ada programming training provided in two classes.

As of the 4th quarter of Fiscal Year 1992:

• Over 160 contractor and NASA person-
nel have been trained in OORA

• Over 60 contractor and NASA personnel
have been trained in OOD with Ada

• Over 200 contractor and NASA person-

nel have been trained in the Ada program-

ming language

The O--Specfamiliarization training was internally

created and consists of a two--day class in reading,

analyzing, and verifying the OORA and OOD prod-

ucts delivered in the Object Specifications (O-

Specs) at PDR.

Lessons Learned

Use a single training vendor

The methods and products should flow from one

step to another, and the terminology should be con-

sistent. The analysis and design methods should

build on one another without redundancy or over-

lap. There should not be a concept shift between

analysis and design. This can only be achieved

from a single vendor.

Plan to spend 3-4 staff months tailoring
off-the-shelf courseware

Youwill not be able to buy"training" off-the-shelf.

You will only be able to buy education. That is, you

want your engineers to return to their desks after

completing the training class and begin to apply

what they were taught. Off'the-shelf courses,

however, will be too generic. Engineers will return

after completing an off-the-shelf course, and will

immediately become confused and frustrated trying

to figure out how they can apply what they were

taught.

Off-the-shelf courseware must be tailored to your

project before it can be effective training. Tailoring

is required for:.

• Project constraints: tools, architecture,

COTS, GFE, existing software legacies

• Project lifecycle: phases, milestones,

products

• Project vocabulary

• Project domain: examples and exercises

We incorporated domain specific examples and
sample products into our courseware.

Plan on each 0--0 course -- OORA or OOD -- re-

quiring two to three staff months of tailoring. The
Ada programming courseshouldrequirevery little

tailoring.

Customer training isessential prior to re-

views and deliveries

Management and customer training is essential to
facilitate an effective review. Reviewers and man-

agers don't need to perform OORA or OOD, but

they must be able to read OORA and OOD prod-
ucts, understand them, and verify that they satisfy

requirements.

A minimum of two--days training is required to

avoid wasting the reviewer's and your time. With-

out training, the inspection meeting will be spent

describing the meaning of the material rather than

discussing requirement and design issues. An inef-

fective review may give the appearance that no sub-
stantive issues exist, but it is more likely that an in-

effective review has overlooked problems that will

be more difficult and expensive to remove later.

SEL-92-004 page 214

Realistic examples are key to gaining ac-

ceptance to new methodsand deliver-
ables

Examples help bridge the gap between the class-

room and the desired project results. Examples lay-

out level of detail and completeness expectations.

Realistic examples must be relevant to the project's
problem domain, and must be representative in size,
complexity, and abstraction.

We developed two examples for SSVTF -- an ex-

ample of a real-time simulation, and an example of
an on-line data processing application. We devel-

oped a vertical slice though each example. That is,

we performed a complete preliminary requirements

analysis to identify the objects and classes; then we

completed the detailed analysis for only a portion of

the classes. We specified a preliminary design for

each of the classes that were fully analyzed, but we

only fully implemented a portion of the operations
in each class.

Summary

The SSVTF project is completing the Preliminary
Design Review of a large software development us-

ing object--oriented methods and systematic reuse.

An incremental development lifecycle was tailored

to provide early feedback and guidance on methods

and products, with repeated attention to reuse. Ob-

ject oriented methods were formally taught and

supported by realistic examples. Reuse was readily

accepted and planned by the developers. Schedule

and budget issues were handled by agreements and

work sharing arranged by the developers.

SEL-92-004 page 215

Large Project Experiences w/Object-Oriented Methods & Reuse
December, 1992

Large Project Experiences
with

Object-Oriented Methods
and

Reuse

W. Wemmle, CAE-Link
D. Reifer, Relfer Consultants, In_

D. Wellor, CAE-Llnk

December, 1992

CAE,Unk

Agenda

Provide Project Overview

Discuss Lessons Leamed

. Development Ufe Cycle

- Processes

- Methods & Tools

- Reuse

- Training

SEL-92-004 page 216

Page I

LIZ _L,d_O0-_6-q_S

eB_

we JOe!(]_IOO18=I.LASS

IIIOB! 6UlUle :ISS MeU AlO;eldtuoo •

(:l_ss)
AtlllOe:l §UlUleJdL_ UOl_eOgl:eA uop,m,S eoeds •

Me!AJe^o _,oe!oJd

;_66_ 'JeqweoecI
esnel=l g spoq_e_ pe;ue.uo%oe[qo/M seoue!Jedx=i pe[oJd eBJe-I

Large Project Experiences w/Object-Oriented Methods & Reuse
December, 1992

Project Overview (Contd)

Fundamental Issues

- Large software development

• . 1.8MSLOCs total by 1999

• . 1.4MSLOC real-time & on-line software

- Five deliveries

•. 600KSLOCs in largest

- Repeating budget pressures

- Concurrency with SSF

. 30 year life span

CAE-I.k_

Project Overview (Contd)

Adopted state-of-the-art S/W technologies

- Ada and C++

. Object-Oriented Analysis & Design

. Incremental development life-cycle

. Systemstic muse, not ad hoc

- CASE tools (front-end and back-end)

- Networked workstations w/Rstional servers

SEL-92-004 page 218

Page 3

Large Project Experiences w/Object-Oriented Methods & Reuse
December, 1992

Development Lifecycle
• Incremental Ufecycle for each of the 5 SSVTF

Deliveries

. Multiple Internal releases from each CSCI

• . Capability Build Release (CAR) to test &

integration

- 1st Increment is simple

•. Learn methods, tools, process

- Follow-on Increments reduce risk

I I .. Capability, technical approach, ..

[I schedule dependency II

il" .oto .,n0...,,or.--r.'="on _LI
CAE4.1I_ ?

Development Lifecycle (Contd)

• Inspections, not formal Reviews

- Used new milestones for reuse, math
models, user Interfaces, and architecture

- Scheduled on a CSCI basis

- Working group, issue-based

- Not summary presenlatlon of dellverables

- Issues, agreements and actions in Minutes

•- Not RIDs

Review snapshots from Software
Development Folders (SDF)

•- Not Iomal delivery of imtlro documents

CAE-Unk $

Page 4
SEL-92-004 page 219

Large Project Experiences w/Object-Oriented Methods & Reuse
December, 1992

Development Lifecycle
Lessons Learned

1- Beware the negative effects of prototyping

• Can hinder culture change

2- Get your customer to buy in when Incremental
development is used

• Harder to manage

3- Inspections make more sense than PDR & CDR

• Focus on real Issues

• Provide early feedback to developers and
methods

4- Delivery manager concept is essential

CAE4Jnk

Processes

• Existing processes would not work with
adopted Iifecycle and technologies

• O-O Methods and tools Judged to be relatively
Immature

• Established a Process Engineering Group
(PEG) within Program Offioa

• Developed prototype processes based on
theory, goals, pragmaucs

Focused on product contents and inspection
process

• Established Software Review Board (SRB) to
oversee application & maturation of the
methods & processes

CAE-Unk 10

SEL-92-004 page 220

Page 5

Large Project Experiences w/Object-Oriented Methods & Reuse
December, 1992

Processes
Lessons Learned

1- The most critical processes are those without
sex appeal

• Inspections, CM, DM, deliveries

2- Just-in-time process enginsering works when
you dedicete the resources needed

3- Process groups can be small, and should
focus on work flows, checklists, and examples

• Support methods training

4- Need a multi-disciplinary team to promote and
mature processes

CAE4Jnk 11

Methods

• Emphasis on consistent method throughout
development

- No concept or structure clashes

Ob|ect-Orlented Requiremants Analysis
(OORA)

. Hybrid of: Seidewltz, Booch '91, Harel

Object-Oriented Design (OOD)

- Based on.Booth and Simulation Virtual
Machine (SVM) architecture

CAE.Unk

Page 6
SEL-92-O04page 221

Large Project Experiences w/Object-Oriented Methods & Reuse
December, 1992

Methods
Lessons Learned

1- Fusion of methods is needed due to their
relative immaturity

• Ignore whining from purists

2- Scelability and developing the Big Picture ore
key success attributes for a new methodology

3- Switch to new methods/processes is

accompanied by massive infrastructure
changes

il . A Chief Methodologist, or Methodology Team I
is needed to provide guidance, interpretations l i

end mature the process __J
CJUE-Unk 13

Tools

• SSF Software Support IEnvironment (SSE)

• Solbourne SPARC Unix workstations

. Interleaf

- Teamwork/Ado

- Alsys Ado

• Rational Ado engines

- Code Management & Version Control
(CMVC)

- Remote Compilation Integrator (RCI)

• NELS being evaluated for rouse repository

CAE4Jnk

SEL-92-O04 page 222

Page 7

Large Project Experiences w/Object-Oriented Methods & Reuse
December, 1992

Tools
Lessons Learned

1- Searching for proper tooling is like the hunt for
the holy Grail

2- Benefits of CASE tools are largely overrated
outside of database applicetions

3- Rational is both good news and bad news

4- Our most valuable tools were organizational

- Aimed at group consensus and team
support

Reuse

• Budget based on Reuse

• Insufficient schedule and scope too broad for
domain analysis

• Stretegi¢ reuse emphasized

- Reuse Inspection Team formed to identify
opportunities

- Reuse action Items tracked

• Separate reuse group not considered
reasonable

• Looking at Incentive system

CAE4.Ink

Page 8
SEL-92-O04 page 223

Large Project Experiences w/Object-Oriented Methods & Reuse
December, 1992

Reuse
Lessons Learned

1- Barriers to reuse am primarily managerial

2- Strategic planning, commitment, empowerment
and persistence are needed to make reuse
happen

3- Object-Oriented methods make it easier to
spot, assess, and agree upon reuse
opportunities

4- Be prepared to modify your processes to
accommodate reuse

Training
• Added O-O thinking to systems engineering

activities to aid in selecting CSCIs

• ACquired a single tra!n!ng vendor via
full-and-open competition

- OORA (4 days)

- OOD w/Ada (5 days)

- Ada Programming (12 days)

• Conducted 2-day training on read, analyze,
ana verify the products distributed at
Inspections and PDR

• Supplemented formal training with brown bag
and open help sessions

CAE-Unk

SEL-92-004 page 224

Page 9

Large Project Experiences w/Object-Oriented Methods & Reuse
December, 1992

Training
Lessons Learned

1- Use a single training vendor for all your
courses

2- Plan to spend 3-4 staff-months of effort
tailoring "off-the-shelr' ¢ourseware to your
methodologies and environment

3- Customer training is essential prior to reviews
and deliveries

4- Realistic examples is key to getting acceptance
from the troops

CAE4.1nk

lj
Summary

e

e

Described the SSVTF project

Presented our lessons learned as of PDR

- Development Life Cycle
- Procmmse

. I_thods & Tools
- Reuse

- Training

Keys to success:
• Defined architecture
• Defined methods, formally taught, supported by examplss

• Defined processes

• Feedback & guidance, early and often

7"1 CAE4Jnk
JI

2O

Page 10
SEL-92-004 page 225

SEL-92-(D4. page 226

